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Summary

Classical stereology is capable of quantifying the total
amount or ‘density’ of a geometrical feature from sampled
information, but gives no information about the local spatial
arrangement of the feature. However, stereological methods
also exist for quantifying the ‘local’ spatial architecture of a
3D microstructure from sampled information. These
methods are capable of quantifying, in a statistical manner,
the spatial interaction in a structure over a range of
distances. One of the key quantities used in a second-order
analysis of a volumetric feature is the set covariance.
Previous applications of covariance analysis have been
‘model-based’ and relied upon computerized image analysis.
In this paper we describe a new ‘design-based’ manual
method, known as linear dipole probes, that is suitable for
estimating covariance from microscopic images. The
approach is illustrated in practice on vertically sectioned
lung tissue. We find that only relatively sparse sampling per
animal is required to obtain estimates of covariance that
have low inter-animal variability.

1. Introduction

Classical stereology is concerned primarily either with
estimates of global quantities (volume, surface area, length,
connectivity and number or their densities) or average
quantities per particle (mean cell volume, mean surface
area, etc.). However, stereological methods also exist for
quantifying the ‘local’ spatial architecture of a 3D micro-
structure from sampled information (e.g. Cruz-Orive, 1989;
Mattfeldt et al., 1993, 1996). These methods are capable of
assessing the degree of positive or negative correlation of a
feature over a range of distances. Practical applications
include the analysis of the spatial arrangements of
osteocyte lacunae in skulls (Baddeley et al., 1987, 1993),
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neurones and glial cells in human neo-cortex (Evans &
Gundersen, 1989), cells and their DNA content (Konig et al.,
1991), the epithelial component of breast tumour tissue
(Mattfeldt et al., 1993), the orientation of glass fibres in
composite materials (Mattfeldt et al., 1994), the spatial
distribution of pores in alumina (Karlsson & Liljeborg,
1994) and vertices in liquid foam (Reed et al., 1997).
Recent theoretical work in this area has been carried out by
Cruz-Orive (1989), Jensen et al. (1990a,b), Jensen & Kiéu
(1992) and Kiéu & Jensen (1993).

In this paper we focus on stereological methods suitable
for quantifying the spatial architecture of a volumetric
feature. The primary function used in this type of analysis is
the covariance. Although the covariance is well known as a
basic technique of quantitative image analysis (Serra,
1982; Gerlach & Stoyan 1986; Stoyan et al., 1995) it is
also well known in the statistical physics literature, where it
is referred to as the two-point probability function (for
example, see Torquato, 1998 and references therein). If the
volume fraction, Vi of the feature is also estimated then
statistical functions derived from the covariance can be
estimated, in particular the pair correlation function g(r),
see Mattfeldt et al. (1993).

Many published accounts of the estimation of covariance
have adopted a ‘model-based’ approach in which the
structure of interest has been assumed to be an isotropic
random set and fixed sampling probes are used. In this
paper we consider the ‘design-based’ case where the phase
of interest is assumed to be non-random and randomised
probes are used in estimation. In order to illustrate the
approach we describe a simple manual method for
estimation of covariance from vertical sampling designs
and give a worked example of the method on vertically
sectioned lung tissue.

2. First- and second-order stereology for volumes

The volume fraction of a phase, Y, within a bounded 3D
reference space (i.e. an object) is defined as the volume of
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the phase per unit volume of the reference space,

Volume of phase Y in reference space

Vy(Y,ref) = 1)

Volume of reference space

The notation Vy, (Y, ref) indicates volume fraction, with the
parentheses specifying the phase of interest (e.g. Y) and the
reference volume which is referred to. Volume fraction is a
globally defined quantity ranging from O to 1 and on its
own gives no indication of the spatial arrangement of the
phase Y within the reference space.

Stereological estimation of volume fraction on cross-
sections is carried out using area probes (Delesse, 1847),
line grids (Rosiwal, 1898) or point grids (Thompson, 1930).
However, in practice, quadratic point grids are the most
commonly used method. Uniform random sections are
sampled from the object and on uniform random fields of
view a regular point grid is superposed. The number of
points hitting the phase of interest, P(Y), divided by the
number hitting the reference space, P(ref), gives a ratio-
unbiased estimate of volume fraction,

P(Y)

Vy(Y, ref) = Pp(Y, ref) = o)

(2)

Volume fraction estimation with point grids does not require
either the magnification or interpoint spacing of the grid at
the level of the micrograph to be known. The volume
fraction of a phase is usually interpreted simply as a
volumetric proportion; however, it can also be considered as
a conditional hitting probability, Pr{x € Y|x E ref}, i.e. the
probability that a uniform random point x that hits the
reference space will also land within the phase Y. This
interpretation is closely linked to that of covariance, as
defined below.

In volume fraction estimation only the total numbers of
points hitting the phase Y and the reference space are
recorded. However, intuitively one would expect that the
pattern of points hitting Y would also give some information
about the spatial arrangement of Y in 3D space. This is
indeed the case if the number of pairs of points, separated by
a particular distance, that hit Y on a section are recorded
(e.g. Mattfeldt et al., 1993; Stoyan et al., 1995). Consider a
straight line joining a pair of points a distance r units apart.
The two end points of the line can be considered to be a
single entity, which we refer to as a dipole, which ‘hits’ a
particular phase Y if both of the endpoints land within the
feature (note, however, that the line joining the two
endpoints does not necessarily also need to be fully in Y;
see Fig. 1a). The covariance of a volumetric feature Y, at a
distance of r units, is defined as the conditional probability
that an isotropic uniform random (IUR) dipole of length r
units hits Y given that it has also hit the reference space i.e.
C(r) =Pr{x €Y, x+rEY|xEref, x+rE ref}. See Appendix
for further details.

The covariance of a 3D phase Y, at a distance r, could be
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estimated by throwing a number of TUR dipoles of length r
units into the reference space. The number of dipoles hitting
the reference space DP(ref,r) and the number hitting the
phase Y, DP(Y,r) are recorded and used to estimate
covariance from

DP(Y,r)

O = Dptref, 1y’

(3)
Although a range of dipoles of fixed length could be used
(Fig. 1b.) to estimate covariance this would be inordinately
time-consuming. In practice it is easier to use a regular
point grid and record the positions of all points hitting phase
Y. From these raw data a whole range of dipole lengths can
be considered. For example, the pattern of point hits in a
quadratic grid of interpoint spacing of 1 unit gives
information about dipoles of length 1, /2, 2, ..., etc. (e.g.
Mattfeldt et al., 1993). Although quadratic and hexagonal
grids have commonly been used a simple linear grid of
points, or linear dipole probe, could be used.

Consider a line divided into m segments of equal length, A
units, by a series of n=m+ 1 points (Fig. 1c). If the line is
superposed on a cross-sectional image a coded numerical
record can be made for each of the points along the line
indicating whether the point lands within the phase of
interest Y (code = 1), within the reference space but outside
Y, i.e. the ‘background’ (code =2), or outside the reference
space (code=0). Each linear probe can thus yield dipole
information at discrete radii of A, 2A, 3A, ..., (n—1)A
units. These data can then be used to estimate covariance
for n— 1 discrete distances using Eq. (3).

It should be noted that the raw data used for covariance
estimation can always be used to estimate volume fraction
from Eq. (2), ie. Vy=C(0)y. At a separation of zero units
each ‘dipole’ will consist of a pair of points that are
coincident in 3D space and thus Eq. (3) simplifies to Eq. (2).
At longer distances the covariance tends to the reference
value of V2.

Practical stereological estimation of covariance with
linear dipole probes requires that a number of IUR dipole
probes can be generated. For example, IUR sections from
isector (Nyengaard & Gundersen, 1992) or orientator
(Mattfeldt et al., 1990) sampling could be used, in which
case the linear dipoles need to be isotropically rotated on the
IUR plane section. More conveniently, IUR dipoles can also
be generated on vertical uniform random (VUR) sections
(Baddeley et al., 1986). If VUR sections are used the vertical
direction must be known and dipoles with a sine weighting
with respect to the vertical must be used. Further practical
aspects of the estimation procedure are outlined in section 3.

Although covariance gives a useful statistical description
of spatial arrangement it is dependent upon volume fraction
and, therefore, making comparisons between the covariance
of two phases occupying different volume fractions can be
problematic (see Mattfeldt et al., 1993, for examples). The
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Fig. 1. (a) A schematic diagram illustrating the definition of a
dipole ‘hit’. Both ends of the dipole are considered to be a single
entity and if both ends land within the phase of interest, in this
case the grey feature, the dipole is said to hit that feature. It should
be noted that the line joining the two test points does not have to
lie fully within the phase of interest. (b) An example of covariance
estimation for an isotropic uniform random field of view. A number
of dipoles of fixed length with isotropic orientation within the plane
have been randomly superposed on the field of view. The covariance
of the darker grey feature at this distance is estimated from the
number of dipoles hitting the phase (i.e. 3) divided by the number
hitting the reference space within the field of view (i.e. 17), giving a
covariance of 3/17. (c) A linear dipole probe composed of six seg-
ments of length A units.

dependence on volume fraction can be overcome by
estimating the pair correlation function, g(r), which is
independent of volume fraction.

The pair correlation function is defined as the expected

volume of the phase Y within a spherical shell of radii r and
r+ dr which is centred at a statistically typical point of Y,
divided by the expected volume of Y in a spherical shell of
the same size centred at an arbitrary point in the structure;

E [volume of Y in spherical shell

(r,r +dr) centred at point of Y]
volume of Y in spherical shell (r,r + dr)
centred at arbitrary point of structure]

gy = i 4)

where E[-] indicates mathematical expectation.

The reference line for the pair correlation function is 1.
Values of g(r) greater (less) than unity indicate positive
(negative) correlations of the volumetric feature. If estimates
of covariance and volume fraction are available the pair
correlation function can be estimated from

C(ry

Vi (Y, ref)? )

g(ryy =

(see Mattfeldt et al. (1993)).

3. Worked example of the application of linear dipole
probes

Four 7-day-old piglets from large white/landrace cross-bred
sows were selected at random from a larger group of 16
animals, culled and immediately fixed in 10% neutral
buffered formalin. The rapid fixing led to minor post-
mortem changes in lung morphology and consequently
technically excellent sections. The right lung from each
piglet was removed and sagitally sectioned; the average slice
thickness and cross-sectional areas estimated by point
counting were used to estimate the volume of the lung by
the Cavalieri method. Each of the lung sections were laid out
flat and a transparent perspex template and metal punch
were used to produce a set of systematic uniform random
cylinders of tissue from each lung slice. These cylinders
were processed and randomly rotated before vertically
splitting into two half-cylinders, one of which was
embedded in Historesin" (Leica, Milton Keynes, UK.). Light
microscopy sections of the embedded lung tissue 1 um thick
were prepared by microtome. These sections were then
mounted on glass microscope slides and stained with 1%
toluidine blue solution. The tissue vertical sections were
observed with an Olympus BH-2 microscope using a
10 x magnification 0-30NA air objective. For each animal
one field of view from each of five slides was recorded with a
Sony XC-77E black and white CCD video camera and
printed out as hardcopy.

For each image two sine-weighted directions were
sampled using the grid from Cruz-Orive & Hunziker
(1986). For each direction a set of four parallel linear
dipoles was generated, with each dipole consisting of 20
points, separated by 357 um at the level of the tissue. The
pattern of points hitting the lung was encoded directly into
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ASCII text files using a laptop PC. Points hitting alveolar
airspace were recorded as a 1, points hitting bronchioles or
other components of the lung matrix as a 2 and points
landing outside the lung as a 0. An example of the use of the
dipole probes on one of the vertical section images is shown
in Fig. 2.

For each animal the ASCII files were analysed using a
simple ANSI ‘C’ programme. The counts of dipoles within
the alveolar airspace and reference space were pooled across
all images within an individual before estimation of
covariance. The point data from the ASCII files were also
used to estimate the volume fraction of alveolar air space
per unit volume of lung using Eq. (2). The estimated volume
fraction and covariance for each animal were then
substituted into Eq. (5) to give an estimated pair correlation
function per animal. The mean pair correlation function
across the four animals is plotted in Fig. 3, with 95%
confidence intervals calculated using the standard deviation
between the four animals and the Student’s ¢ distribution
for three degrees of freedom.

The images from one of the animals were found to be of
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Fig. 2. (a) A vertical section of lung tissue from animal 11 with a
sine-weighted set of four linear dipole probes. Each linear dipole
probe consists of 20 points separated by 357 um at the level of
the tissue. (b) The pattern of points hitting the alveolar airspace
is shown as a series of white squares. Points hitting other parts
of the lung matrix (bronchioles, blood vessels, etc.) are shown as
black squares.
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Fig. 3. A plot of the mean pair correlation function versus radius
for the four animals (solid line with filled circles). In each case
the pair correlation function was estimated using Eq. (5) from esti-
mates of covariance and volume fraction made using Eqs (3) and
(2), respectively. The pointwise 95% confidence intervals were
calculated using the standard deviation between the four animals
and the Student’s t-distribution for three degrees of freedom (dotted
lines). The increased variability of the estimates of pair correlation
function with increasing distance is indicated by the wider confi-
dence intervals at larger distances.

generally high contrast and were easy to segment. On these
five images an image analysis estimation of covariance was
carried out following the method described by Mattfeldt et al.
(1993). In this analysis the 512 x430 pixel images were
segmented and every 10th pixel in the x and y directions
sampled (giving a point grid of 51 x43 pixels). The basic
grid spacing of the quadratic array of ‘hits’ and ‘misses’ was
15-7pm at the level of the tissue. The pair correlation
functions for this animal are shown in Fig. 4. The
confidence intervals around the dipole probe estimated
function were calculated with four degrees of freedom (i.e.
between the five images).

4. Discussion

Many of the methods used in stereology to quantify spatial
arrangement have evolved from methods developed for the
analysis of 2D point patterns found in ecology and
geography (e.g. Getis & Boots, 1978; Ripley, 1981; Diggle,
1983; Cressie, 1993) and the analysis of 2D random sets
(e.g. Serra, 1982). In many early applications of the 2D
methods, replication was not considered and the single
observed point or area pattern was assumed to be a
realization (example) of a stochastic process. However, in
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Fig. 4. A plot of the mean pair correlation function versus radius
for one of the animals estimated using linear dipole probes (solid
line with filled circles) and image analysis (dashed line with filled
triangles). The pointwise 95% confidence intervals around the linear
dipole estimates were calculated using the standard deviation
between the five images and the Student’s t-distribution for four
degrees of freedom. The average coefficient of error between the
five images over a range of radii 0—130 um was found to be 21%
for the image analysis and 25% for the linear dipole probe method.

many 3D problems where the quantification of the average
spatial arrangement at a microstructural level is of interest
there is the real possibility of taking many replicated
samples of the pattern. If replicated samples of a spatial
pattern are available the number and type of assumptions
made in the analysis can be relaxed and also some measure
of the variability of the spatial pattern can be made (e.g.
Baddeley et al., 1987, 1993).

The covariance estimation method described in this paper
differs from previous methods by adopting a design-based
sampling protocol. Design-based stereological methods are
particularly useful for materials that cannot adequately be
modelled as an isotropic random set. Many biological
structures fall into this category; the objects are bounded
in extent and often have highly ordered (i.e. non-random)
internal microstructure. In these circumstances making the
assumption that the structure is an isotropic random set
may be inappropriate. Applying a design-based approach
allows the investigator to apply covariance analysis to
materials that are known not to be random. This may be
particularly useful for materials that are heterogeneous but
isotropic and for materials that have already been sectioned
in an anisotropic manner, e.g. the vertically sectioned tissue
used in this paper. It should be borne in mind that although

the definition of covariance given here is independent of the
anisotropy of the material being studied, in practice it would
be of limited value to estimate the covariance of a strongly
anisotropic material. If the material under study is known,
or suspected to be, strongly anisotropic then the covariance
could be plotted as a function of direction or a more
appropriate measure of anisotropy used. Under these
circumstances the analysis may well be easier with an
image analyser.

In many histological applications the images that are
obtained for stereological analysis are often of low and
variable contrast and contain a great deal of information
that is context specific. Under these circumstances the
development of robust and reliable automatic segmentation
is non-trivial and in many cases is unsolved. The inherent
difficulty of analysing this type of image automatically has
led to three broad methods of analysis. The first is to make
an attempt at segmentation followed by manual image
editing. The image editing can range from minor ‘tidying
up’ of a segmented image to almost complete ‘tracing’ of
the structures of interest using a mouse or digitizing tablet.
The second approach is to use a hybrid method that uses
computer graphics to generate suitable test grids and
systems, followed by user input to mark intersection points,
etc. The computer then uses this interactively generated
data to calculate estimates of the required parameters.
The hybrid approach thus makes a near optimal use of
the relative strengths of both the computer and highly
trained histologist. The computer is used to do what it is
good at — accurate generation of interactive graphical
elements of defined properties, recording of data, data
handling and storage and numerical calculations. The
expert is used to do what he/she is good at — making expert
assessments of the detailed microstructure of a given piece
of anatomy. The third approach is to use a fully manual
method, using acetate overlays, manual recording of point
counts, intercept lengths, etc, followed by numerical
calculation. The optimal approach for a problem will be
dictated to a large degree by the realities of the images that
are generated, the degree of image analysis capability in a
laboratory, cost of equipment, etc. In some cases automated
image analysis will be a natural and obvious choice; in
others the hybrid or manual approaches will be optimal.

If the images of interest can be reliably segmented into
two phases then there are two well known image analysis
techniques that can be applied. The classical image analysis
technique developed at the Ecole des Mines, Fontainbleau,
makes use of mathematical morphology. The covariance at
a particular distance r is the volume fraction of the image
eroded by a two-point structuring element separated by r
(Serra, 1982). Some commercially available image analysis
software systems can be programmed to automatically
carry out this type of analysis. A related approach was
described by Mattfeldt et al. (1993). In this method a
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segmented image is subsampled by a quadratic grid of a
given pixel spacing. The subsampling results in an array
consisting of 1s, where the point grid hits the phase of
interest, and Os where the point grid hits the background.
From the array of hits and misses the volume fraction and
covariance can be easily calculated for a range of distances.
The advantage of using digital image analysis for estimation
of covariance is that the digitized and segmented images can
readily be stored for future analysis.

In this paper we have concentrated on the estimation of
covariance for situations where it is extremely difficult, or
practically impossible, to segment the images. The estima-
tion technique requires only the recording of the pattern of
point hits generated by the use of a set of linear dipole
probes on microscopic images or micrographs. Previous
manual approaches for stereological estimation of the
spatial architecture of a volumetric feature include the
method proposed by Cruz-Orive (1989). However, this
method required multiple distance measurements to be
made and to the best of our knowledge has not been applied
in practice. The estimation method described here can easily
be taught, and in practice the recording of the pattern of
‘hits’ and ‘misses’ directly into ASCII files on a laptop PC
whilst viewing the image with the linear dipole probes
overlain is straightforward. Although the recording of point
hits is more tedious than simple point counting it is possible
to develop a very rapid recording technique. For example,
the estimation of covariance for the lung tissue presented
here took approximately 45 min per case; given that volume
fraction estimation is obtained directly from the data that
have been recorded for estimating the covariance the
additional time taken for covariance estimation is therefore
not excessive. A Microsoft” Windows”95 compatible
program to estimate covariance from linear dipole data is
available from the authors.

The linear dipole method is inherently less precise than
image analysis methods which make use of all of the pixels
making up an image. However, the precision of a stereo-
logical estimation technique is not simply dictated by the
precision per 2D image. For example, in the case of vertical
sections each of the 2D images used for analysis represents
only a single orientation from the 27 radians possible for
each position of the image plane. In this paper we compared
the linear dipole method vs. image analysis for a single
animal (Fig. 4). In order to get a rough idea of the relative
components of the inherent between-image variability of
covariance and that introduced by the linear dipole method
we calculated the average coefficient of error (CE = standard
error/mean) over the five images for the first four radii
evaluated in the linear dipole method. The average CE for
the image analysis method was found to be 21% and that
for the dipole method 25%. If we assume that there is
negligible error in estimation of 2D covariance using image
analysis the 21% CE for the image analysis technique thus
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represents the inherent between-image variability; in other
words, the lack of precision caused by sampling a 3D
structure with 2D planes. Thus, although the image
analysis method was found to be more precise than the
dipole method, the bulk of the variability within a given
animal was actually inherent between-image variability,
and the increased variability introduced by the dipole
sampling was relatively unimportant.

The use of both quadratic point grids and linear dipoles
for covariance estimation has the attractive property that
the estimates are automatically corrected for edge effect bias
(see Stoyan et al., 1995). This means that inter-feature
distances that are an appreciable proportion of the size of
the field of view can be considered. For example, in the lung
tissue the covariance for inter-feature distances up to about
680 um was estimated from images of width about 800 um.
In common with other spatial statistical methods, the
precision of the covariance estimates decreases with
increasing distance owing to the reduced number of point
pairs hitting the reference space. For example, in animal 11,
at a distance of 35:7 um there were 800 dipoles landing
within the reference space, of which 384 hit the alveolar
airspace compared with 40 and 8 dipoles, respectively, for a
distance of 678 um. The increased variability at larger
distances is reflected in the wider confidence intervals
between animals shown in Fig. 3.

Potentially one of the most interesting aspects of the use
of second-order stereology in biological applications is the
small inter-animal variability of the estimated functions.
This was first noted by Baddeley et al. (1987, 1993) in their
analysis of the spatial distribution of osteocyte lacunae, but
was also a notable feature of the analysis of mammary
cancers by Mattfeldt et al. (1993) and recent work we have
carried out on placental tissue (Reed, Howard, McFadden et
al. unpublished results). A similar finding is also apparent
here; the pair correlation function of alveolar airspace in
lung has a smaller inter-animal variability across the four
animals than the corresponding inter-animal variability of
total alveolar volume. For example, for small inter-point
distances the coefficient of error (CE) of the covariance
estimates between the four animals was found to be about
3%, compared with a CE of alveolar volume estimates of
16%. The fact that local spatial architecture seems to be
more invariant between animals than the total amount, or
density, of a feature suggests that in a highly ordered
biological microstructure second-order stereology may
become increasingly important.

The results presented here indicate that the volume of the
alveolar air space is highly positively correlated with itself at
small distances (corresponding to distances within a single
alveolus) and has no marked positive or negative correlation
with itself at larger distances. Lung morphologists may say
that this result is entirely expected. However, by applying a
second-order analysis the possibility of quantifying this



102 M. G. REED AND C. V. HOWARD

previously qualitative understanding can be carried out
with a relatively sparse sampling regime compared with
either quadratic point grids (Mattfeldt et al., 1993) or
mathematical morphology (Serra, 1982). Our tentative
conclusion is that if the average spatial architecture of a
feature is required across a number of animals the well-
known motto of first-order stereology, “Do more less well”
(Gundersen & Osterby, 1981) may also be applicable. The
combination of an efficiently estimated, meaningful and
design-based measure of spatial architecture may make
diagnostic second-order stereology a possibility.
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Appendix — Design-based definition of covariance

The non-centred covariance of a set Y is defined as the
probability that a pair of points x and x + r, separated by
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distance of r units, both hit Y,
C(r)=Pr{xEY,x+reYj}. (A1)

This definition has usually been applied under the assump-
tion that Y is a stationary random set (Serra, 1982;
Mattfeldt et al., 1993). However, with a small modification
the same definition can be applied to the extended
deterministic case described by Miles (1978). Consider a
bounded and non-random set X[ R, containing a distinct
bounded and non-random subset Y X (not necessarily
connected). The probability that a pair of points hits the
phase Y must now take account of the possibility of pairs of
points completely missing the reference space X. Under
these constraints the covariance can be defined as a
conditional probability, i.e.

Cn=Pr{xeY,x+reyxeX,x+reX}. (A2)

This function is clearly dependent upon the bounding set X.
However, if X is assumed to be much larger than the range
of distances of interest, the extended deterministic model of
Miles (1978), Eq. (A2) has a similar interpretation as in the
stationary case (Stoyan et al., 1995).

In order to calculate the probability in Eq. (A2) an
integration over all pairs of points of separation r units that
hit the reference space needs to be made. Let xdenote the
Cartesian co-ordinate of a point in R3, u an orientation
vector on the unit orientation sphere S° and h(r,u) a vector
of length r units and orientation u. The conditional
probability in Eq. (A2) is given by

J J IXEY) 11X+ h(r,u) € Y)dxdu
C(V)y — xeX JueS

(A3)
J J X € X) - (X + h(r, u) € X)dxdu
XeX Jues
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where 1(.) is the indicator function, defined as 1 if true and
0 otherwise. This definition of covariance is thus equal to
the probability that both x and x+h(ru) will hit Y
conditional on the fact that they both hit the set X.

The ratio defined by Eq. (A3) can be estimated by
sampling a number, n, of uniform random (UR) points x;
over X. For each of these points a uniform random
orientation is sampled from the unit orientation sphere
(i.e. an isotropic direction), thus defining a point pair x; and
x; + h(u,r);. A ‘ratio-unbiased’ estimate (Baddeley, 1993) of
Eq. (A3) is then obtained from

> 1 €Y) 1% + haw,r), € Y)
Cry =5 e
X, € X) - 1(x; + h(u, r); € X)
=1

¢

where x; and h; are the ith point and orientation,
respectively. It should be noted that a point pair x; and
x; + h(u,r); contributes to the numerator or denominator of
Eq. (A4) if and only if both points land within the set of
interest (Y and X, respectively); then Eq. (3) is a simple re-
statement of (A4). In practice, the generation of UR points
and isotropic lines can be carried out on either ITUR or VUR
sections.

In common with the model-based definition of covariance
the value of C(r) for r=0 is simply the volume fraction V
However, it should be noted that in distinction to the model-
based definition the covariance given by Eq. (A3) at infinity
is zero not V2. In many practical cases the object X will be
much larger than the maximum radius of interest, r,,4. in

which case C(r>>rpa) = Vi



